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Highlights

e  Artificial intelligence (Al) models, especially Extreme Gradient Boosting (XGBoost) and Gradient Boosting Machine (GBM),
achieved the highest predictive performance for postoperative mortality in congenital heart disease (CHD) patients, with pooled
AUC values of 0.93 and 0.91, respectively.

®  The meta-analysis demonstrated that Al-assisted prediction tools provide high specificity (0.96) and robust accuracy compared
to conventional risk stratification systems.

® Integrating Al into clinical workflows can enhance perioperative decision-making and improve patient outcomes in CHD, though
further multicenter validation is needed for broader implementation.

ABSTRACT

Received: 9 Mar. 2025 Background: Congenital heart disease (CHD) is a leading cause of morbidity and mortality in

. children requiring surgical intervention. Accurate prediction of postoperative mortality remains
Revised: 7 Apr. 2025 . challenging because of the limitations of traditional risk stratification systems. Atrtificial
Accepted: 16 Apr. 2025 : intelligence (Al) has emerged as a promising tool for enhancing predictive accuracy in this field.

Article info:

Objective: This systematic review and meta-analysis aimed to evaluate the efficacy of Al in
predicting postoperative mortality in patients with CHD.

Methods: Following the PRISMA guidelines, we systematically searched four databases for
relevant studies published up to July 16, 2024. Studies with retrospective, prospective, or cross-
sectional designs that evaluated Al-based models for predicting mortality after CHD surgery
were eligible for inclusion. Data were extracted, and study quality was assessed using the
PROBAST tool. Pooled estimates for sensitivity, specificity, and the area under the curve (AUC)
were calculated.

Results: Six studies involving 42,536 patients and evaluating 11 distinct Al models were
included. The meta-analysis yielded a pooled AUC of 0.90 (95% CI, 0.88 to 0.93), with a pooled
sensitivity of 0.43 (95% Cl, 0.23 to 0.65) and a pooled specificity of 0.96 (95% CI, 0.92 to 0.98).
Subgroup analysis revealed that the Extreme Gradient Boosting (AUC, 0.93) and Gradient
Boosting Machine (AUC, 0.91) models had the highest predictive performance. All included
studies were judged to have a low risk of bias.

Conclusion: The Extreme Gradient Boosting and Gradient Boosting Machine models
demonstrate high specificity and promising accuracy for predicting postoperative mortality in
patients with CHD, outperforming traditional scoring systems. Further multicenter, prospective

studies are needed to enhance generalizability and support clinical implementation.
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Background

ongenital heart disease (CHD) is

among the most common congenital

anomalies, occurring in approximately

4 to 10 per 1000 live births.? Despite

advancements in diagnostics, surgical
techniques, and perioperative care, children with
CHD who undergo anatomical corrective
procedures continue to experience high rates of
morbidity and mortality.2 Surgery remains the
cornerstone of CHD management, as untreated
CHD is associated with substantial mortality. In
developed countries, surgical interventions have
markedly improved patient outcomes and reduced
mortality rates.® Nonetheless, nearly 20% of
pediatric patients with CHD are readmitted within 30
days after surgery, and 4.2% of those undergoing
surgical procedures do not survive.* In addition,
early mortality rates after neonatal cardiac surgery
are estimated at approximately 10%.°

The risk of mortality in patients with CHD is
closely linked to the complexity of surgical
procedures. Accurate prediction of in-hospital
mortality is critical for supporting clinical decision-
making, optimizing procedural strategies, and
improving patient outcomes. Several major risk
stratification systems are currently used to predict
mortality and morbidity in pediatric CHD surgery,
including Risk Adjustment for Congenital Heart
Surgery (RACHS-1), Aristotle Basic Complexity,
Aristotle Comprehensive Complexity, and Society of
Thoracic Surgeons—European Association for
Cardio-Thoracic Surgery (STS-EACTS) Congenital
Heart Surgery Mortality Categories. These
frameworks are largely based on estimated
procedural risks or complexities and rely heavily on
expert opinion and consensus.®>® Nevertheless,
these traditional tools primarily categorize surgical
procedures and often fail to account for
comprehensive individual patient risk factors, which
may limit their predictive accuracy for specific cases.
Accordingly, combining multiple clinical features to
determine prognosis is essential. Developing a

predictive model that integrates diverse and
clinically relevant parameters holds substantial
value.®

Machine learning (ML), an emerging technology,
has gained momentum because of its ability to
model complex nonlinear relationships, particularly
when analyzing large datasets. Moreover, ML
addresses common challenges in clinical research,
including small sample sizes, risk of bias,
insufficiently detailed descriptions of treatments and
patient characteristics, missing data, and the lack of
calibrated models.! Several studies have
demonstrated that ML-assisted tools outperform
traditional scoring systems. For example, Zeng et
al’ reported that an Extreme Gradient Boosting
(XGBoost) model provided superior predictive
performance for postoperative complications
compared with conventional risk adjustment models
in pediatric cardiac surgery.

The objective of this systematic review and
meta-analysis is to synthesize recent evidence on
the use of artificial intelligence (Al) in predicting
mortality among patients with CHD following
surgery.

Methods

Search Strategy and Selection Criteria

This review followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. A systematic search was
conducted in four databases (PubMed, Cochrane,
Embase, and Scopus) through July 16, 2024.
Relevant studies identified by manual searching
were also included. Two researchers independently
reviewed titles and abstracts and selected pertinent
citations for full-text review. Because this study
involved only the retrieval and synthesis of data from
published research, ethical approval was not
required. The detailed search strategies for each
database are presented in (Table 1).




Al for Postoperative Mortality Prediction in CHD

RHYTEA

Research in Heart Yield and Translational Medicine

Table 1. Search results from PubMed, Cochrane, Embase, Scopus, and ScienceDirect databases.

PubMed

((("Artificial Intelligence"[Mesh]) AND "Mortality"[Mesh]) AND "Heart Defects, Congenital'[Mesh]) AND "surgery" 4
[Subheading]

Cochrane

Artificial Intelligence OR Machine Intelligence OR Machine Learning OR Computer Reasoning AND mortality OR 51

death AND Congenital Heart Disease OR Congenital Heart Defect OR Malformation Of Heart AND surgery

Scopus

artificial AND intelligence OR machine AND intelligence OR machine AND learning OR computer AND reasoning
AND mortality OR death AND congenital AND heart AND disease OR congenital AND heart AND defect OR 50
malformation AND of AND heart AND surgery OR operative AND procedures OR operations

Embase

(("artificial intelligence":ab,ti OR 'machine learning':ab,ti OR 'information processing':ab,ti) AND 'mortality rate":ab,ti

69

AND 'congenital heart disease":ab,ti OR 'congenital heart malformation:ab,ti) AND surgery:ab,ti

ScienceDirect

((Artificial Intelligence OR Machine Learning OR Computer Reasoning) AND (mortality OR death) AND (Congenital

307

Heart Disease OR Congenital Heart Defect OR Malformation of Heart) AND (surgery)

Study Eligibility

The Population, Intervention, Comparison, and
Outcome (PICO) framework was used to guide
screening and interpretation. The population of
interest included postoperative patients with CHD.
The intervention was the application of Al
techniques, including but not limited to ML and deep
learning. Comparators included traditional risk-
scoring methods or no comparator. The primary
outcome was mortality.

Studies were excluded if they were not
retrospective, prospective, or cross-sectional in
design; if they were published in languages other
than English; or if they were unrelated to the
research topic.

Data Extraction and Quality Assessment

A single reviewer independently extracted data
on study characteristics and diagnostic outcomes
using a standardized form. The extracted data
included author names, publication year, study
design, number of patients, population
characteristics, Al method, and key results,
including the area under the curve (AUC). The risk
of bias was assessed for each study using the
Prediction model Risk of Bias Assessment Tool
(PROBAST), which is designed for reviews of Al
diagnostic test accuracy. Four domains—
participants, predictors, outcomes, and analysis—
were evaluated for risk of bias and applicability

concerns. A domain was categorized as having a
low risk of bias if most signaling questions were
answered “yes.” A study was considered to have an
overall low risk of bias only if all domains were rated
as low risk. Studies with a high risk of bias in one or
more domains were considered to be at high risk of
bias, and those with at least one unclear domain
(while all others were low risk) were categorized as
having an unclear risk of bias.

Statistical Analysis

We aggregated the numbers of true positives,
false positives, true negatives, and false negatives
to calculate pooled sensitivity and specificity for
predicting postoperative mortality in patients with
CHD. A meta-analysis was performed using
MetaDTA, STATA version 17, and R Studio to
generate forest plots and summary receiver
operating characteristic curves. A subgroup
analysis was conducted to compare the
performance of different Al algorithms that were
used in three or more studies.

Results

The detailed search strategies for each database
are presented in (Table 1) of the supplementary
material. The database search yielded 481 records.
After screening titles and abstracts, 25 articles were
selected for full-text evaluation. Of these, six studies
met the eligibility criteria and were included in the
final analysis. The PRISMA flow diagram is shown
in (Figure 1).
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Figure 1. The image depicts the flow diagram of the study selection.

The Prediction Model Risk of Bias Assessment bias in the included studies. As depicted in (Table 2),
Tool (PROBAST) was utilized to evaluate risk of all studies were judged to have a low risk of bias.

Table 2. Summary of the risk of bias and applicability concerns

Studies Domain 1 Domain 2 Domain 3 Domain 4 Overall

Domains:

Zurn C,
20238
Du X,
20228
Weiss AJ,
2023°
Zhou Y,
2021
Jalali A,
20201
Tong C,
20241

Judgement

High risk
D1: Bias due to participants

. D2: Bias due to predictors
Low risk

D3: Bias due to outcomes

Some concerns D4: Bias due to analyses
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The meta-analysis included five retrospective as an outcome measure for the Al models
studies and one prospective study. Of these, three assessed. (Table 3) summarizes the study and
were conducted in China, two in the United States, patient characteristics, with additional details
and one in Germany. All studies involved patients provided in the supplementary material.
with postoperative CHD. Each study reported AUC
Table 3. Summary of the studies included in the meta-analysis
Sample .
No. Study ) Population Al model Outcome
Size
Patignt§ from t-he department§ of . Logistic . AUC: 0.9486
Zurn C, 1456 pediatric cardiology and cardiac ) o
1 8 . . Regression . Sensitivity: 0.85
2023 patients surgery who underwent congenital
heart surgery - Random Forest . Specificity: 0.8948
Patients aged 0-18 years who were . - AUC: 0.874 (0.848-0.901)
Du X, 24685 : ) . Extreme Gradient o
2 5 . diagnosed with CHD and underwent . Sensitivity: 0.751
2022 patients CHD Boosting (XGBoost)
surgery . Specificity: 0.879
. AUC: 0.978 (0.964-0.989)
Weiss AJ, 6392 Patients who underwent cardiac . Extreme Gradient
3 0 . o . . Recall: 0.795 (0.686-0.900)
2023 patients surgeries, including CHD surgery Boosting (XGBoost)
. Precision: 0.756 (0.646-0.861)
. Random Forest:
AUC: 0.801 (0.697-0.891);
Sensitivity: 0.268 (0.059-
0.529); Specificity: 0.927
(0.866-0.976)
. AdaBoost:
AUC: 0.641 (0.476-0.788);
Sensitivity: 0.260 (0.059-0.500);
Specificity: 0.894 (0.821-0.954)
. Logistic Regression:
. Random Forest
. AUC: 0.688 (0.549-0.816);
- AdaBoost Sensitivity: 0.201 (0.000-0.429);
. Logistic Specificity: 0.917 (0.851-0.966)
Regression . Support Vector Machine:
- Support Vector AUC: 0.714 (0.574-0.834);
Zhou Y 381 Patients of orthotopic heart Machine Sensitivity: 0.000 (0.000-0.000);
4 202110' patients transplantation, including patients . Extreme Gradient Specificity: 1.000 (1.000-1.000)
with CHD Boosting (XGBoost) . Extreme Gradient Boosting:
Gradient Boost AUC: 0.769 (0.662-0.869);
Machine Sensitivity: 0.138 (0.000-0.353);
. Artificial Neural Specificity: 0.953 (0.902-0.989)
Network . Gradient Boosting Machine:
. Naive AUC: 0.819 (0.737-0.889);
Sensitivity: 0.271 (0.077-0.533);
Specificity: 0.916 (0.845-0.966)
. Artificial Neural Network:
AUC: 0.755 (0.639-0.851);
Sensitivity: 0.066 (0.000-0.214);
Specificity: 0.988 (0.962-1.000)
. Naive:
AUC: 0.500 (0.500-0.500);
Sensitivity: 0.000 (0.000-0.000);
Specificity: 1.000 (1.000-1.000)
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. Deep Neural Network:

AUC: 0.95;
Precision: 0.94;
Recall: 0.86
. Gradient Boosting Machine:
. Deep Neural AUC: 0.90;
Newborns with single ventricle Network Precision: 0.87;
Jalali A, 549 physiology who underwent either an . Gradient Boosting Recall: 0.78
2020 patients ~ MBTS or an RV-to-PA shunt during Machine . Random Forest:
the Norwood procedure . Random Forest AUC: 0.84;
. Decision Tree Precision: 0.71,;
Recall: 0.27
. Decision Tree:
AUC: 0.55;
Precision: 0.43;
Recall: 0.10
. Light Gradient Boosting
Machine:
AUC: 0.893 (0.884-0.895);
Sensitivity: 0.763;
Specificity: 0.871
. Logistic Regression:
- Light Gradient AUC: 0.887 (0.879-0.901);
Boosting Machine Sensitivity of 0.773;
. Logistic Specificity of 0.855
Tong C, 9073 Pediatric patients who underwent Regression + Support Vector Machine:
2024* patients congenital heart surgery - Support Vector AUC: 0.883 (0.876-0.886);
Machine Sensitivity: 0.878;

Specificity: 0.708
. Random Forest:
AUC: 0.890 (0.874-0.906);
Sensitivity: 0.758;
Specificity: 0.866
. CatBoost:
AUC: 0.892 (0.876-0.893);
Sensitivity: 0.761,;
Specificity: 0.866

. Random Forest

. CatBoost

CHD: congenital heart disease; AUC: area under the curve

The AUC for postsurgical mortality among
patients with CHD was reported across six studies,
involving 11 Al models, including Random Forest,
Logistic Regression, Extreme Gradient Boosting
(XGBoost), Gradient Boosting Machine, Support
Vector Machine, AdaBoost, Artificial Neural
Network, Naive Bayes, Deep Neural Network,
Decision Tree, and CatBoost. The pooled AUC was
0.90 (95% ClI, 0.88 to 0.93) (Figure 2).

The pooled sensitivity of ML models for
predicting postoperative mortality among patients
with CHD was 0.43 (95% CI, 0.23 to 0.65), and the

pooled specificity was 0.96 (95% CI, 0.92 to 0.98)
(Figure 3).

A subgroup analysis was conducted to compare
the performance of different ML models in predicting
mortality among patients with CHD after surgery.
Subgroup analyses were performed only for Al
models included in more than one study. Extreme
Gradient Boosting and Gradient Boosting Machine
showed the best performance, with area under the
AUC values of 0.93 (95% CI, 0.45 t0 0.98) and 0.91
(95% ClI, 0.55 to 0.98), respectively (Table 4).
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Figure 2. The summary receiver operating characteristic (SROC) curve shows the performance of artificial intelligence (Al) in predicting
postsurgical mortality among patients with congenital heart disease (CHD).

D Sensitivity (95% Cl) Specificity (95% Cl)
| |
Zum C; 2023 - RF I ——=—  0.83(0.64,0.94) = | 075(0.71,079)
Zum C; 2023 - LR | —a— (.85 (0.62, 0.97) & | 0.89(0.87,0.91)
Du X; 2022 - XGB I — 0.75 (0.67, 0.82) » | 088(0.87, 089
Weiss AJ; 2023 - XGB I —=—  0.79(0.64,091) lm 0.99 (0.99, 1.00)
Zhou Y; 2021 - RF —-—: 0.28 (0.17, 0.41) --JI 0.93 (0.89, 0.95)
Zhou Y; 2021 - AdaBoost —— 0.26 (0.15, 0.39) = 089(0:86,099)
Zhou Y; 2021 - LR - 0.21 (0.1, 0.33) = 052(0:88,094)
ZhouY; 2021 -SVM  m— | 0.00 (0.00, 0.06) | ™ 1.00 (099, 1.00)
Zhou Y; 2021 - XGB - 0.14 (0.06, 0.25) ® 0.95(0.92,0.97)
Zhou Y; 2021 - GBM — 0.28 (0.17, 0.41) = 0.92(0.88, 0.94)
Zhou Y; 2021 - ANN --— | 0.07 (0.02, 0.17) |m 0.99 (0.97, 1.00)
ZhouY; 2021 - Naive | 0.00 (0.00, 0.06) | m 1.00 (0.99, 1.00)
Jalali A; 2020 - DNN I —a—  0.86(0.76,0.93) lm 0.99 (0.98, 1.00)
Jalali A; 2020 - GBM : —a— 078 (0.66,0.87) :- 0.98 (0.97, 0.99)
Jalali A; 2020 - RF —— 0.26 (0.17, 0.38) = 098(097,099)
Jalali A; 2020 - DT = 0.14 (0.07, 0.24) 0.97 (0.95, 0.99)
Tong C; 2024 - LightGBM | - 0.76 (0.73, 0.79) | 087(086,088)
Tong C; 2024 - LR | - 0.77 (0.74, 0.80) = | 086(085086)
Tong C; 2024 - SVM I = 0.88(0.85,0.90) ® | 076(0.75077)
Tong C; 2024 - RF I - 0.76 (0.73, 0.79) = | 087(0.86,087)
Tong C; 2024 - CatBoost I - 0.76 (0.73, 0.79) = | 087(086,087)
Overall <:> 0.43 (0.23, 0.65) ? 0.96 (0.92, 0.98)
T T 1 r T 1
0 5 1 0 5 1
Sensitivity Specificity

Figure 3. The image illustrates the forest plots of the pooled sensitivity and specificity for the performance of artificial intelligence (Al) in
predicting mortality among CHD patients postoperatively.
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Table 4. Subgroup analysis of each artificial intelligence (Al) type in predicting postoperative mortality rate among congenital heart
disease (CHD) patients

Subgroup Study Sensitivity Specificity PLR NLR DOR AUC
0.43 0.96 9.7 0.60 16 0.90
All combined 6
(0.23-0.65) (0.92-0.98) (5.8-16.3) (0.41-0.87) (8.0-33.0) (0.88-0.93)
Random A 0.55 0.91 6.5 0.49 13 0.87
Forest (0.27-0.80) (0.79-0.97) (3.8-11.1) (0.27-0.88) (7.0-24.0) (0.83-0.89)
Logistic . 0.61 0.889 5.22 0.46 16.90 0.89
Regression (0.21-0.912) (0.85-0.92) (2.3-676) (0.11-0.87) (2.66-57.80) (0.78-0.92)
Extreme
Gradient 5 0.56 0.96 21.6 0.481 89.80 0.93
Boosting (0.15-0.90) (0.84-0.99) (1.72-88.0) (0.47-0.93) (1.94-533.0) (0.45-0.98)
(XGBoost)
Gradient 0.62 0.94 13.0 0.42 476 0.91
Boosting 3
Machine (0.29-0.87) (0.82-0.98) (2.26-41.1) (0.13-0.8) (3.0-226.0) (0.55-0.98)
Support 0.21 0.98 6.06 0.65 14.70 0.885
Vector 2
Machine (0.00-0.99) (0.18-1.00) (1.2-10.1) (0.03-1.00) (2.8-45.9) (0.21-0.98)
Discussion monitoring. For instance, research by Zurn et al®

The present meta-analysis identified 6 studies
that examined the role of Al in predicting
postoperative mortality in patients with CHD. These
studies included a total of 42,536 patients who
underwent surgery and evaluated 11 distinct Al
models. The pooled AUC was 0.90 (95% CI, 0.88 to
0.93), with a pooled sensitivity of 0.43 (95% CI, 0.23
to 0.65) and a pooled specificity of 0.96 (95% ClI,
0.92 to 0.98). Subgroup analyses revealed that the
XGBoost and Gradient Boosting Machine models
demonstrated the best overall performance for
predicting postoperative mortality.

The emergence of ML in health care has
transformed approaches to predicting and
managing outcomes in  CHD, including
postoperative mortality.'? Studies have shown that
ML can outperform existing risk-scoring systems.®
Current consensus-based evaluation methods,
such as the Society of Thoracic Surgeons—
European Association for Cardio-Thoracic Surgery
(STAT) score, are static and do not account for
perioperative or postoperative changes in a patient’s
condition. In contrast, ML models can integrate
dynamic perioperative data, which enables more
accurate risk prediction and supports clinical
decision-making. The early identification of high-risk
patients by ML may facilitate targeted preventive
measures or more intensive postoperative

found that combining the STAT score with
postoperative markers significantly improved
survival prediction, particularly in the first 24 hours
after surgery. Similarly, Du et al® reported that the
XGBoost model generated more accurate
predictions than conventional models, such as the
STS-EACTS or the RACHS-1, both of which rely
primarily on procedural complexity rather than
individual patient characteristics. Weiss et al® further
demonstrated that STS scoring may not adequately
account for certain or combined procedures,
whereas ML approaches can incorporate these
complexities into mortality risk prediction.

Another challenge in CHD management is
patient heterogeneity, as individuals with the same
diagnosis can have highly variable clinical
manifestations. ML algorithms address this by

integrating  multidimensional  data, including
demographic information, echocardiographic
findings, laboratory results, and postoperative

markers, into predictive models. Further, ML can
assign variable importance to different predictors,
which helps clinicians prioritize modifiable risk
factors. By way of example, Du et al® found that low
oxygen saturation, the need for mechanical
ventilation, and unplanned reintervention were key
predictors of mortality. In another study, Zirn et al®
identified elevated postoperative serum lactate level
as a strong prognostic factor, reporting that each 1-
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mmol/L increase was associated with a 2.16-fold
higher mortality risk (OR, 2.16). Age also remains a
critical determinant. As highlighted by Yeh et al,'*
mortality risk is highest within the first 5 years of life
and declines thereafter. These findings underscore
the clinical utility of ML for refining perioperative risk
assessment.

Another strength of ML is its reproducibility,
providing consistent predictions independent of a
physician's expertise or training. This capability
reduces interobserver variability, which is an
inherent limitation of subjective clinical judgment. It
is important to note that ML is not intended to
replace clinical assessment but to complement it by
offering an additional layer of decision support.
Moreover, ML models can be integrated with
continuously updated electronic health record
(EHR) data, allowing for real-time adjustment of risk
predictions as a patient's condition evolves.8°

ML methods can automatically identify and
select key feature combinations, enabling efficient
and accurate assessment and prediction of disease
progression. This capability provides improved
scientific insight for clinical practice.*? For instance,
Du et al® found that preoperative oxygen saturation
had the greatest impact on ML model performance
for predicting mortality. The same study identified
preoperative mechanical ventilation and unplanned
cardiac reintervention in neonates with CHD as
additional strong predictors of postoperative
mortality. In another study, Zirn et al® identified
serum lactate level as a strong predictor of
postoperative mortality in patients with CHD. The
authors reported that for each 1-mmol/L increase in
the average serum lactate level during the first 24
hours after surgery, the mortality risk increased by
2.16-fold (OR, 2.16).

Age is another significant risk factor for mortality
in this population. Research by Yeh et al'®
demonstrated that most deaths among patients with
CHD occur within the first 5 years of life. This finding
is supported by their subsequent 2015 study, which
reported a declining trend in mortality risk with
increasing age.** In this meta-analysis, subgroup
analysis demonstrated that the XGBoost and
Gradient Boosting Machine models had the best
performance, achieving AUC values of 0.93 (95%
Cl, 0.45 to 0.98) and 0.91 (95% ClI, 0.55 to 0.98),
respectively. The XGBoost algorithm is an
ensemble method based on classification and

regression trees that is recognized for its
computational efficiency and scalability. It also
effectively handles missing data, which makes it
suitable for identifying complex relationships
between predictor variables and clinical outcomes.
For instance, Li et al*® reported that the XGBoost
model successfully ranked 20 critical predictors from
a set of 44 variables. These characteristics make
XGBoost well-suited for clinical applications
compared with other ML methods, although it
remains susceptible to overfitting when applied to
datasets with a limited number of features.

The Gradient Boosting Machine model benefits
from its sequential learning structure, which
improves model calibration and discrimination
compared with other algorithms, such as Random
Forest. Kong et al* emphasized that such ensemble

methods  generally  outperform  parametric
approaches like logistic regression when applied to
large, complex datasets.

However, the accuracy of an ML model is highly
dependent on its development process. For
instance, Allyn et al® developed a model using data
from a single institution and restricted their feature
set to those in the EuroSCORE, an approach that
risks omitting important multimodal and institution-
specific predictors. Ideally, ML development should
incorporate a comprehensive, multimodal feature
set. Furthermore, while using hospital- and patient-
specific data enables more accurate, personalized
risk assessment and can identify unique center-level
patterns, models trained on such specific data may
lack generalizability and not be replicable across
different institutions.®

The current systematic review and meta-analysis
provides further insight into the role of Al in
predicting postoperative mortality in patients with
CHD. To our knowledge, it is the first to perform a
subgroup analysis comparing the performance of
different Al algorithms. Several limitations must be
acknowledged. First, there was variability in the
outcome measures across the included studies, with
reported mortality outcomes ranging from 30-day to
1-year mortality. Second, the study population was
restricted to patients with CHD who had undergone
surgery, and we did not apply criteria based on the
specific type of surgery performed, which resulted in
a heterogeneous surgical population. These
limitations were a direct consequence of the small
number of relevant studies available for inclusion in
this meta-analysis.
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Conclusion

This systematic review and meta-analysis
highlight the promising role of Al, particularly
Extreme Gradient Boosting and Gradient Boosting
Machine models, in predicting postoperative
mortality among patients with CHD. With a pooled
AUC of 0.90 and a high specificity of 0.96, these
models demonstrate potential as reliable adjuncts to
existing clinical risk stratification methods. Unlike
traditional scoring systems, Al models provide
individualized predictions by integrating a broader
range of clinical variables.

Several limitations should be noted. The
included studies differed in outcome measures (in-
hospital, 30-day, and 1-year mortality), introducing
methodological heterogeneity. The relatively small
number of studies and the lack of multicenter
prospective validation underscore the need for
further research. Future investigations should focus
on integrating Al into clinical workflows to enhance
perioperative  decision-making and  patient
outcomes, particularly in high-risk CHD populations.
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