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Highlights 
 

• Artificial intelligence (AI) models, especially Extreme Gradient Boosting (XGBoost) and Gradient Boosting Machine (GBM), 
achieved the highest predictive performance for postoperative mortality in congenital heart disease (CHD) patients, with pooled 
AUC values of 0.93 and 0.91, respectively. 

• The meta-analysis demonstrated that AI-assisted prediction tools provide high specificity (0.96) and robust accuracy compared 
to conventional risk stratification systems. 

• Integrating AI into clinical workflows can enhance perioperative decision-making and improve patient outcomes in CHD, though 
further multicenter validation is needed for broader implementation. 
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A B S T R A C T 

Background: Congenital heart disease (CHD) is a leading cause of morbidity and mortality in 

children requiring surgical intervention. Accurate prediction of postoperative mortality remains 

challenging because of the limitations of traditional risk stratification systems. Artificial 

intelligence (AI) has emerged as a promising tool for enhancing predictive accuracy in this field. 

Objective: This systematic review and meta-analysis aimed to evaluate the efficacy of AI in 

predicting postoperative mortality in patients with CHD. 

Methods: Following the PRISMA guidelines, we systematically searched four databases for 

relevant studies published up to July 16, 2024. Studies with retrospective, prospective, or cross-

sectional designs that evaluated AI-based models for predicting mortality after CHD surgery 

were eligible for inclusion. Data were extracted, and study quality was assessed using the 

PROBAST tool. Pooled estimates for sensitivity, specificity, and the area under the curve (AUC) 

were calculated. 

Results: Six studies involving 42,536 patients and evaluating 11 distinct AI models were 

included. The meta-analysis yielded a pooled AUC of 0.90 (95% CI, 0.88 to 0.93), with a pooled 

sensitivity of 0.43 (95% CI, 0.23 to 0.65) and a pooled specificity of 0.96 (95% CI, 0.92 to 0.98). 

Subgroup analysis revealed that the Extreme Gradient Boosting (AUC, 0.93) and Gradient 

Boosting Machine (AUC, 0.91) models had the highest predictive performance. All included 

studies were judged to have a low risk of bias. 

Conclusion: The Extreme Gradient Boosting and Gradient Boosting Machine models 

demonstrate high specificity and promising accuracy for predicting postoperative mortality in 

patients with CHD, outperforming traditional scoring systems. Further multicenter, prospective 

studies are needed to enhance generalizability and support clinical implementation. 

 

 

 

Keywords: Congenital Heart Disease; Artificial Intelligence; Mortality Prediction; Postoperative 

Outcomes

 

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.18502/jthc.v20i3.20115
https://orcid.org/0000-0002-8514-7196
https://orcid.org/0000-0002-0489-3665
https://orcid.org/0000-0002-0489-3665


Lies Dina Liastuti et al. 2025; 20 (3):231-241  

 

232 

Background 

ongenital heart disease (CHD) is 

among the most common congenital 

anomalies, occurring in approximately 

4 to 10 per 1000 live births.1 Despite 

advancements in diagnostics, surgical 

techniques, and perioperative care, children with 

CHD who undergo anatomical corrective 

procedures continue to experience high rates of 

morbidity and mortality.2 Surgery remains the 

cornerstone of CHD management, as untreated 

CHD is associated with substantial mortality. In 

developed countries, surgical interventions have 

markedly improved patient outcomes and reduced 

mortality rates.3 Nonetheless, nearly 20% of 

pediatric patients with CHD are readmitted within 30 

days after surgery, and 4.2% of those undergoing 

surgical procedures do not survive.4 In addition, 

early mortality rates after neonatal cardiac surgery 

are estimated at approximately 10%.5 

The risk of mortality in patients with CHD is 

closely linked to the complexity of surgical 

procedures. Accurate prediction of in-hospital 

mortality is critical for supporting clinical decision-

making, optimizing procedural strategies, and 

improving patient outcomes. Several major risk 

stratification systems are currently used to predict 

mortality and morbidity in pediatric CHD surgery, 

including Risk Adjustment for Congenital Heart 

Surgery (RACHS-1), Aristotle Basic Complexity, 

Aristotle Comprehensive Complexity, and Society of 

Thoracic Surgeons–European Association for 

Cardio-Thoracic Surgery (STS-EACTS) Congenital 

Heart Surgery Mortality Categories. These 

frameworks are largely based on estimated 

procedural risks or complexities and rely heavily on 

expert opinion and consensus.3,6 Nevertheless, 

these traditional tools primarily categorize surgical 

procedures and often fail to account for 

comprehensive individual patient risk factors, which 

may limit their predictive accuracy for specific cases. 

Accordingly, combining multiple clinical features to 

determine prognosis is essential. Developing a 

predictive model that integrates diverse and 

clinically relevant parameters holds substantial 

value.3 

Machine learning (ML), an emerging technology, 

has gained momentum because of its ability to 

model complex nonlinear relationships, particularly 

when analyzing large datasets. Moreover, ML 

addresses common challenges in clinical research, 

including small sample sizes, risk of bias, 

insufficiently detailed descriptions of treatments and 

patient characteristics, missing data, and the lack of 

calibrated models.1 Several studies have 

demonstrated that ML-assisted tools outperform 

traditional scoring systems. For example, Zeng et 

al7 reported that an Extreme Gradient Boosting 

(XGBoost) model provided superior predictive 

performance for postoperative complications 

compared with conventional risk adjustment models 

in pediatric cardiac surgery. 

The objective of this systematic review and 

meta-analysis is to synthesize recent evidence on 

the use of artificial intelligence (AI) in predicting 

mortality among patients with CHD following 

surgery. 

 

Methods 
 

Search Strategy and Selection Criteria 

 

This review followed the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses 

(PRISMA) guidelines. A systematic search was 

conducted in four databases (PubMed, Cochrane, 

Embase, and Scopus) through July 16, 2024. 

Relevant studies identified by manual searching 

were also included. Two researchers independently 

reviewed titles and abstracts and selected pertinent 

citations for full-text review. Because this study 

involved only the retrieval and synthesis of data from 

published research, ethical approval was not 

required. The detailed search strategies for each 

database are presented in (Table 1). 

  

C 
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Table 1. Search results from PubMed, Cochrane, Embase, Scopus, and ScienceDirect databases. 

PubMed 

((("Artificial Intelligence"[Mesh]) AND "Mortality"[Mesh]) AND "Heart Defects, Congenital"[Mesh]) AND "surgery" 

[Subheading] 
4 

Cochrane 

Artificial Intelligence OR Machine Intelligence OR Machine Learning OR Computer Reasoning AND mortality OR 

death AND Congenital Heart Disease OR Congenital Heart Defect OR Malformation Of Heart AND surgery 
51 

Scopus 

artificial AND intelligence OR machine AND intelligence OR machine AND learning OR computer AND reasoning 

AND mortality OR death AND congenital AND heart AND disease OR congenital AND heart AND defect OR 

malformation AND of AND heart AND surgery OR operative AND procedures OR operations 

50 

Embase 

(('artificial intelligence':ab,ti OR 'machine learning':ab,ti OR 'information processing':ab,ti) AND 'mortality rate':ab,ti 

AND 'congenital heart disease':ab,ti OR 'congenital heart malformation':ab,ti) AND surgery:ab,ti 
69 

ScienceDirect 

((Artificial Intelligence OR Machine Learning OR Computer Reasoning) AND (mortality OR death) AND (Congenital 

Heart Disease OR Congenital Heart Defect OR Malformation of Heart) AND (surgery) 
307 

 

Study Eligibility 

 

The Population, Intervention, Comparison, and 

Outcome (PICO) framework was used to guide 

screening and interpretation. The population of 

interest included postoperative patients with CHD. 

The intervention was the application of AI 

techniques, including but not limited to ML and deep 

learning. Comparators included traditional risk-

scoring methods or no comparator. The primary 

outcome was mortality. 

Studies were excluded if they were not 

retrospective, prospective, or cross-sectional in 

design; if they were published in languages other 

than English; or if they were unrelated to the 

research topic. 

 

Data Extraction and Quality Assessment 

  
A single reviewer independently extracted data 

on study characteristics and diagnostic outcomes 

using a standardized form. The extracted data 

included author names, publication year, study 

design, number of patients, population 

characteristics, AI method, and key results, 

including the area under the curve (AUC). The risk 

of bias was assessed for each study using the 

Prediction model Risk of Bias Assessment Tool 

(PROBAST), which is designed for reviews of AI 

diagnostic test accuracy. Four domains—

participants, predictors, outcomes, and analysis—

were evaluated for risk of bias and applicability 

concerns. A domain was categorized as having a 

low risk of bias if most signaling questions were 

answered “yes.” A study was considered to have an 

overall low risk of bias only if all domains were rated 

as low risk. Studies with a high risk of bias in one or 

more domains were considered to be at high risk of 

bias, and those with at least one unclear domain 

(while all others were low risk) were categorized as 

having an unclear risk of bias. 

 

Statistical Analysis 
 

We aggregated the numbers of true positives, 

false positives, true negatives, and false negatives 

to calculate pooled sensitivity and specificity for 

predicting postoperative mortality in patients with 

CHD. A meta-analysis was performed using 

MetaDTA, STATA version 17, and R Studio to 

generate forest plots and summary receiver 

operating characteristic curves. A subgroup 

analysis was conducted to compare the 

performance of different AI algorithms that were 

used in three or more studies. 

 

Results 
 

The detailed search strategies for each database 

are presented in (Table 1) of the supplementary 

material. The database search yielded 481 records. 

After screening titles and abstracts, 25 articles were 

selected for full-text evaluation. Of these, six studies 

met the eligibility criteria and were included in the 

final analysis. The PRISMA flow diagram is shown 

in (Figure 1). 
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Figure 1. The image depicts the flow diagram of the study selection. 

 

The Prediction Model Risk of Bias Assessment 

Tool (PROBAST) was utilized to evaluate risk of 

bias in the included studies. As depicted in (Table 2(, 

all studies were judged to have a low risk of bias. 

 
Table 2. Summary of the risk of bias and applicability concerns 

Studies Domain 1 Domain 2 Domain 3 Domain 4 Overall 

Zurn C,  

20238 

     

Du X, 

20223 

     

Weiss AJ,  

20239 

     

Zhou Y, 

202110 

     

Jalali A, 

202011 

     

Tong C, 

20241 

     

 

Domains: 

D1: Bias due to participants 

D2: Bias due to predictors 

D3: Bias due to outcomes 

D4: Bias due to analyses 

 

Judgement 

 
High risk 

 
 Low risk 

 Some concerns 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

- 

- - 

- 

- 

- 

- 

- 

+ 

X 
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The meta-analysis included five retrospective 

studies and one prospective study. Of these, three 

were conducted in China, two in the United States, 

and one in Germany. All studies involved patients 

with postoperative CHD. Each study reported AUC 

as an outcome measure for the AI models 

assessed. (Table 3) summarizes the study and 

patient characteristics, with additional details 

provided in the supplementary material. 

 

  Table 3. Summary of the studies included in the meta-analysis 

No. Study 
Sample 

Size 
Population AI model Outcome 

1 
Zurn C, 

20238 

1456 

patients 

Patients from the departments of 

pediatric cardiology and cardiac 

surgery who underwent congenital 

heart surgery 

. Logistic 

Regression 

. Random Forest 

. AUC: 0.9486 

. Sensitivity: 0.85 

. Specificity: 0.8948 

2 
Du X, 

20223 

24685 

patients 

Patients aged 0–18 years who were 

diagnosed with CHD and underwent 

CHD surgery 

. Extreme Gradient 

Boosting (XGBoost) 

. AUC: 0.874 (0.848-0.901) 

. Sensitivity: 0.751 

. Specificity: 0.879 

3 
Weiss AJ, 

20239 

6392 

patients 

Patients who underwent cardiac 

surgeries, including CHD surgery 

. Extreme Gradient 

Boosting (XGBoost) 

. AUC: 0.978 (0.964-0.989) 

. Recall: 0.795 (0.686-0.900) 

. Precision: 0.756 (0.646-0.861) 

4 
Zhou Y, 

202110 

381 

patients 

Patients of orthotopic heart 

transplantation, including patients 

with CHD 

. Random Forest 

. AdaBoost 

. Logistic 

Regression 

. Support Vector 

Machine 

. Extreme Gradient 

Boosting (XGBoost) 

Gradient Boost 

Machine 

. Artificial Neural 

Network 

. Naive 

. Random Forest: 

AUC: 0.801 (0.697-0.891); 

Sensitivity: 0.268 (0.059-

0.529); Specificity: 0.927 

(0.866-0.976) 

. AdaBoost: 

AUC: 0.641 (0.476-0.788); 

Sensitivity: 0.260 (0.059-0.500); 

Specificity: 0.894 (0.821-0.954) 

. Logistic Regression: 

. AUC: 0.688 (0.549-0.816); 

Sensitivity: 0.201 (0.000-0.429); 

Specificity: 0.917 (0.851-0.966) 

. Support Vector Machine: 

AUC: 0.714 (0.574-0.834); 

Sensitivity: 0.000 (0.000-0.000); 

Specificity: 1.000 (1.000-1.000) 

. Extreme Gradient Boosting: 

AUC: 0.769 (0.662-0.869); 

Sensitivity: 0.138 (0.000-0.353); 

Specificity: 0.953 (0.902-0.989) 

. Gradient Boosting Machine: 

AUC: 0.819 (0.737-0.889); 

Sensitivity: 0.271 (0.077-0.533); 

Specificity: 0.916 (0.845-0.966) 

. Artificial Neural Network: 

AUC: 0.755 (0.639-0.851); 

Sensitivity: 0.066 (0.000-0.214); 

Specificity: 0.988 (0.962-1.000) 

. Naive: 

AUC: 0.500 (0.500-0.500); 

Sensitivity: 0.000 (0.000-0.000); 

Specificity: 1.000 (1.000-1.000) 
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5 
Jalali A, 

202011 

549 

patients 

Newborns with single ventricle 

physiology who underwent either an 

MBTS or an RV-to-PA shunt during 

the Norwood procedure 

. Deep Neural 

Network 

. Gradient Boosting 

Machine 

. Random Forest 

. Decision Tree 

. Deep Neural Network: 

AUC: 0.95; 

Precision: 0.94; 

Recall: 0.86 

. Gradient Boosting Machine: 

AUC: 0.90; 

Precision: 0.87; 

Recall: 0.78 

. Random Forest: 

AUC: 0.84; 

Precision: 0.71; 

Recall: 0.27 

. Decision Tree: 

AUC: 0.55; 

Precision: 0.43; 

Recall: 0.10 

6 
Tong C, 

20241 

9073 

patients 

Pediatric patients who underwent 

congenital heart surgery 

. Light Gradient 

Boosting Machine 

. Logistic 

Regression 

. Support Vector 

Machine 

. Random Forest 

. CatBoost 

 

. Light Gradient Boosting 

Machine: 

AUC: 0.893 (0.884-0.895); 

Sensitivity: 0.763; 

Specificity: 0.871 

. Logistic Regression: 

AUC: 0.887 (0.879-0.901); 

Sensitivity of 0.773; 

Specificity of 0.855 

. Support Vector Machine: 

AUC: 0.883 (0.876-0.886); 

Sensitivity: 0.878; 

Specificity: 0.708 

. Random Forest: 

AUC: 0.890 (0.874-0.906); 

Sensitivity: 0.758; 

Specificity: 0.866 

. CatBoost: 

AUC: 0.892 (0.876-0.893); 

Sensitivity: 0.761; 

Specificity: 0.866 
 

CHD: congenital heart disease; AUC: area under the curve 

 

The AUC for postsurgical mortality among 

patients with CHD was reported across six studies, 

involving 11 AI models, including Random Forest, 

Logistic Regression, Extreme Gradient Boosting 

(XGBoost), Gradient Boosting Machine, Support 

Vector Machine, AdaBoost, Artificial Neural 

Network, Naive Bayes, Deep Neural Network, 

Decision Tree, and CatBoost. The pooled AUC was 

0.90 (95% CI, 0.88 to 0.93) (Figure 2).  

The pooled sensitivity of ML models for 

predicting postoperative mortality among patients 

with CHD was 0.43 (95% CI, 0.23 to 0.65), and the 

pooled specificity was 0.96 (95% CI, 0.92 to 0.98) 

(Figure 3). 

A subgroup analysis was conducted to compare 

the performance of different ML models in predicting 

mortality among patients with CHD after surgery. 

Subgroup analyses were performed only for AI 

models included in more than one study. Extreme 

Gradient Boosting and Gradient Boosting Machine 

showed the best performance, with area under the 

AUC values of 0.93 (95% CI, 0.45 to 0.98) and 0.91 

(95% CI, 0.55 to 0.98), respectively (Table 4). 
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Figure 2. The summary receiver operating characteristic (SROC) curve shows the performance of artificial intelligence (AI) in predicting 

postsurgical mortality among patients with congenital heart disease (CHD). 

 

 

 

Figure 3. The image illustrates the forest plots of the pooled sensitivity and specificity for the performance of artificial intelligence (AI) in 

predicting mortality among CHD patients postoperatively. 
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Table 4. Subgroup analysis of each artificial intelligence (AI) type in predicting postoperative mortality rate among congenital heart 

disease (CHD) patients 

Subgroup Study Sensitivity Specificity PLR NLR DOR AUC 

All combined 6 
0.43 

(0.23-0.65) 

0.96 

(0.92-0.98) 

9.7 

(5.8-16.3) 

0.60 

(0.41-0.87) 

16 

(8.0-33.0) 

0.90 

(0.88-0.93) 

Random 

Forest 
4 

0.55 

(0.27-0.80) 

0.91 

(0.79-0.97) 

6.5 

(3.8-11.1) 

0.49 

(0.27-0.88) 

13 

(7.0-24.0) 

0.87 

(0.83-0.89) 

Logistic 

Regression 
3 

0.61 

(0.21-0.91) 

0.889 

(0.85-0.92) 

5.22 

(2.3-676) 

0.46 

(0.11-0.87) 

16.90 

(2.66-57.80) 

0.89 

(0.78-0.92) 

Extreme 

Gradient 

Boosting 

(XGBoost) 

3 
0.56 

(0.15-0.90) 

0.96 

(0.84-0.99) 

21.6 

(1.72-88.0) 

0.481 

(0.47-0.93) 

89.80 

(1.94-533.0) 

0.93 

(0.45-0.98) 

Gradient 

Boosting 

Machine 

3 
0.62 

(0.29-0.87) 

0.94 

(0.82-0.98) 

13.0 

(2.26-41.1) 

0.42 

(0.13-0.8) 

47.6 

(3.0-226.0) 

0.91 

(0.55-0.98) 

Support 

Vector 

Machine 

2 
0.21 

(0.00-0.99) 

0.98 

(0.18-1.00) 

6.06 

(1.2-10.1) 

0.65 

(0.03-1.00) 

14.70 

(2.8-45.9) 

0.885 

(0.21-0.98) 

 

Discussion 

 

The present meta-analysis identified 6 studies 

that examined the role of AI in predicting 

postoperative mortality in patients with CHD. These 

studies included a total of 42,536 patients who 

underwent surgery and evaluated 11 distinct AI 

models. The pooled AUC was 0.90 (95% CI, 0.88 to 

0.93), with a pooled sensitivity of 0.43 (95% CI, 0.23 

to 0.65) and a pooled specificity of 0.96 (95% CI, 

0.92 to 0.98). Subgroup analyses revealed that the 

XGBoost and Gradient Boosting Machine models 

demonstrated the best overall performance for 

predicting postoperative mortality. 

The emergence of ML in health care has 

transformed approaches to predicting and 

managing outcomes in CHD, including 

postoperative mortality.12 Studies have shown that 

ML can outperform existing risk-scoring systems.3 

Current consensus-based evaluation methods, 

such as the Society of Thoracic Surgeons–

European Association for Cardio-Thoracic Surgery 

(STAT) score, are static and do not account for 

perioperative or postoperative changes in a patient’s 

condition. In contrast, ML models can integrate 

dynamic perioperative data, which enables more 

accurate risk prediction and supports clinical 

decision-making. The early identification of high-risk 

patients by ML may facilitate targeted preventive 

measures or more intensive postoperative 

monitoring. For instance, research by Zürn et al8 

found that combining the STAT score with 

postoperative markers significantly improved 

survival prediction, particularly in the first 24 hours 

after surgery. Similarly, Du et al3 reported that the 

XGBoost model generated more accurate 

predictions than conventional models, such as the 

STS-EACTS or the RACHS-1, both of which rely 

primarily on procedural complexity rather than 

individual patient characteristics. Weiss et al9 further 

demonstrated that STS scoring may not adequately 

account for certain or combined procedures, 

whereas ML approaches can incorporate these 

complexities into mortality risk prediction.  

Another challenge in CHD management is 

patient heterogeneity, as individuals with the same 

diagnosis can have highly variable clinical 

manifestations. ML algorithms address this by 

integrating multidimensional data, including 

demographic information, echocardiographic 

findings, laboratory results, and postoperative 

markers, into predictive models. Further, ML can 

assign variable importance to different predictors, 

which helps clinicians prioritize modifiable risk 

factors. By way of example, Du et al3 found that low 

oxygen saturation, the need for mechanical 

ventilation, and unplanned reintervention were key 

predictors of mortality. In another study, Zürn et al8 

identified elevated postoperative serum lactate level 

as a strong prognostic factor, reporting that each 1-
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mmol/L increase was associated with a 2.16-fold 

higher mortality risk (OR, 2.16). Age also remains a 

critical determinant. As highlighted by Yeh et al,14 

mortality risk is highest within the first 5 years of life 

and declines thereafter. These findings underscore 

the clinical utility of ML for refining perioperative risk 

assessment. 

Another strength of ML is its reproducibility, 

providing consistent predictions independent of a 

physician's expertise or training. This capability 

reduces interobserver variability, which is an 

inherent limitation of subjective clinical judgment. It 

is important to note that ML is not intended to 

replace clinical assessment but to complement it by 

offering an additional layer of decision support. 

Moreover, ML models can be integrated with 

continuously updated electronic health record 

(EHR) data, allowing for real-time adjustment of risk 

predictions as a patient's condition evolves.8,9 

ML methods can automatically identify and 

select key feature combinations, enabling efficient 

and accurate assessment and prediction of disease 

progression. This capability provides improved 

scientific insight for clinical practice.12 For instance, 

Du et al3 found that preoperative oxygen saturation 

had the greatest impact on ML model performance 

for predicting mortality. The same study identified 

preoperative mechanical ventilation and unplanned 

cardiac reintervention in neonates with CHD as 

additional strong predictors of postoperative 

mortality. In another study, Zürn et al8 identified 

serum lactate level as a strong predictor of 

postoperative mortality in patients with CHD. The 

authors reported that for each 1-mmol/L increase in 

the average serum lactate level during the first 24 

hours after surgery, the mortality risk increased by 

2.16-fold (OR, 2.16). 

Age is another significant risk factor for mortality 

in this population. Research by Yeh et al13 

demonstrated that most deaths among patients with 

CHD occur within the first 5 years of life. This finding 

is supported by their subsequent 2015 study, which 

reported a declining trend in mortality risk with 

increasing age.14 In this meta-analysis, subgroup 

analysis demonstrated that the XGBoost and 

Gradient Boosting Machine models had the best 

performance, achieving AUC values of 0.93 (95% 

CI, 0.45 to 0.98) and 0.91 (95% CI, 0.55 to 0.98), 

respectively. The XGBoost algorithm is an 

ensemble method based on classification and 

regression trees that is recognized for its 

computational efficiency and scalability. It also 

effectively handles missing data, which makes it 

suitable for identifying complex relationships 

between predictor variables and clinical outcomes. 

For instance, Li et al15 reported that the XGBoost 

model successfully ranked 20 critical predictors from 

a set of 44 variables. These characteristics make 

XGBoost well-suited for clinical applications 

compared with other ML methods, although it 

remains susceptible to overfitting when applied to 

datasets with a limited number of features. 

The Gradient Boosting Machine model benefits 

from its sequential learning structure, which 

improves model calibration and discrimination 

compared with other algorithms, such as Random 

Forest. Kong et al16 emphasized that such ensemble 

methods generally outperform parametric 

approaches like logistic regression when applied to 

large, complex datasets. 

However, the accuracy of an ML model is highly 

dependent on its development process. For 

instance, Allyn et al9 developed a model using data 

from a single institution and restricted their feature 

set to those in the EuroSCORE, an approach that 

risks omitting important multimodal and institution-

specific predictors. Ideally, ML development should 

incorporate a comprehensive, multimodal feature 

set. Furthermore, while using hospital- and patient-

specific data enables more accurate, personalized 

risk assessment and can identify unique center-level 

patterns, models trained on such specific data may 

lack generalizability and not be replicable across 

different institutions.9 

The current systematic review and meta-analysis 

provides further insight into the role of AI in 

predicting postoperative mortality in patients with 

CHD. To our knowledge, it is the first to perform a 

subgroup analysis comparing the performance of 

different AI algorithms. Several limitations must be 

acknowledged. First, there was variability in the 

outcome measures across the included studies, with 

reported mortality outcomes ranging from 30-day to 

1-year mortality. Second, the study population was 

restricted to patients with CHD who had undergone 

surgery, and we did not apply criteria based on the 

specific type of surgery performed, which resulted in 

a heterogeneous surgical population. These 

limitations were a direct consequence of the small 

number of relevant studies available for inclusion in 

this meta-analysis. 
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Conclusion 
 

This systematic review and meta-analysis 

highlight the promising role of AI, particularly 

Extreme Gradient Boosting and Gradient Boosting 

Machine models, in predicting postoperative 

mortality among patients with CHD. With a pooled 

AUC of 0.90 and a high specificity of 0.96, these 

models demonstrate potential as reliable adjuncts to 

existing clinical risk stratification methods. Unlike 

traditional scoring systems, AI models provide 

individualized predictions by integrating a broader 

range of clinical variables. 

Several limitations should be noted. The 

included studies differed in outcome measures (in-

hospital, 30-day, and 1-year mortality), introducing 

methodological heterogeneity. The relatively small 

number of studies and the lack of multicenter 

prospective validation underscore the need for 

further research. Future investigations should focus 

on integrating AI into clinical workflows to enhance 

perioperative decision-making and patient 

outcomes, particularly in high-risk CHD populations. 
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