Original Article

The Diagnostic Role of Speckle-Tracking Echocardiography–Derived Right Ventricular Longitudinal Strain in Determining the Severity of Rheumatic Mitral Stenosis

Abstract

Introduction: Echocardiographic planimetry is the primary and most available modality for diagnosing rheumatic mitral stenosis (MS). Nonetheless, this approach is highly reliant on the examiner’s technique. Echocardiographic evaluation of MS should also include assessment of right ventricular (RV) function because of its prognostic role. We hypothesized that the assessment of RV function via speckle-tracking echocardiography could also have a diagnostic role in determining MS severity.
Methods: This cross-sectional study included 47 patients with a typical diagnosis of rheumatic MS. Echocardiographic data were recorded and evaluated offline by an expert cardiologist. We measured right ventricular global longitudinal strain (RVGLS), right ventricular free-wall longitudinal strain (RVFWLS), mitral valve area (MVA) using 2D planimetry, and other conventional parameters of MS severity. Data were analyzed and visualized utilizing SPSS version 26 (IBM Corp) and Python 3.10.6 (Python Software Foundation).
Results: Our analysis showed that both RVGLS (R=–0.598; P<0.05) and RVFWLS (R=–0.620; P<0.05) were significantly correlated with MVA. The mean RVGLS values in patients with severe and progressive MS were –14.44±4.36 and –18.12±3.25, respectively (P=0.017). The mean RVFWLS values also demonstrated a significant difference between these two groups (–6.3±4.7 vs–20.8±3.2; P=0.005). The area under the curve (AUC) for RVGLS and RVFWLS in detecting severe MS was 0.75 (95% CI, 0.64 to 0.86) and 0.78 (95% CI, 0.66 to 0.90), respectively.
Conclusion: RVGLS and RVFWLS significantly correlate with MVA and may serve as tools to assess the severity of rheumatic MS in daily clinical practice. These strain parameters have high sensitivity for ruling out severe MS during routine echocardiographic evaluation.

1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982-3021.
2. Watkins DA, Johnson CO, Colquhoun SM, Karthikeyan G, Beaton A, Bukhman G, et al. Global, Regional, and National Burden of Rheumatic Heart Disease, 1990-2015. N Engl J Med. 2017;377(8):713-22.
3. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739-91.
4. Sattarzadeh R, Tavoosi A, Saadat M, Derakhshan L, Khosravi B, Geraiely B. Calculation of Mitral Valve Area in Mitral Stenosis: Comparison of Continuity Equation and Pressure Half Time With Two-Dimensional Planimetry in Patients With and Without Associated Aortic or Mitral Regurgitation or Atrial Fibrillation. Acta Med Iran. 2017;55(11):696-704.
5. Shiran A, Goldstein SA, Ellahham S, Mintz GS, Pichard AD, Pinnow E, Lindsay J Jr. Accuracy of Two-Dimensional Echocardiographic Planimetry of the Mitral Valve Area before and after Balloon Valvuloplasty. Cardiology. 2008;90(3):227-30.
6. Ozdemir AO, Kaya CT, Ozdol C, Candemir B, Turhan S, Dincer I, Erol C. Two-dimensional longitudinal strain and strain rate imaging for assessing the right ventricular function in patients with mitral stenosis. Echocardiography. 2010;27(5):525-33.
7. Davarpasand T, Zoroufian A, Ahmadi Roknabadi R, Najafi MS, Karimi Z, Mansourian S, et al. Prognostic Impact of Right Ventricular Diastolic Dysfunction in Patients Undergoing Isolated Coronary Artery Bypass Grafting. Arch Iran Med. 2025;28(1):18-23.
8. Narimani-Javid R, Mahalleh M, Behboodi K, Izadpanahi K, Arzhangzadeh A, Nikfar R, et al. Prognostic significance of right ventricular dysfunction in heart failure with preserved ejection fraction: a meta-analysis of reconstructed time-to-event data. Echo Res Pract. 2025;12(1):13.
9. Sari N, Soesanto AM. Right ventricular function in mitral stenosis: plays a fundamental role. J Echocardiogr. 2024;22(4):185-92.
10. Pattynama PM, De Roos A, Van der Wall EE, Van Voorthuisen AE. Evaluation of cardiac function with magnetic resonance imaging. Am Heart J. 1994;128(3):595-607.
11. Smolarek D, Gruchała M, Sobiczewski W. Echocardiographic evaluation of right ventricular systolic function: The traditional and innovative approach. Cardiol J. 2017;24(5):563-72.
12. Muraru D, Haugaa K, Donal E, Stankovic I, Voigt JU, Petersen SE, et al. Right ventricular longitudinal strain in the clinical routine: a state-of-the-art review. Eur Heart J Cardiovasc Imaging. 2022;23(7):898-912.
13. Brown SB, Raina A, Katz D, Szerlip M, Wiegers SE, Forfia PR. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest. 2011;140(1):27-33.
14. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging. 2013;6(5):711-21.
15. Li Y, Li H, Zhu S, Xie Y, Wang B, He L, et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC Cardiovasc Imaging. 2020;13(11):2287-99.
16. Prihadi EA, van der Bijl P, Dietz M, Abou R, Vollema EM, Marsan NA, et al. Prognostic Implications of Right Ventricular Free Wall Longitudinal Strain in Patients with Significant Functional Tricuspid Regurgitation. Circ Cardiovasc Imaging. 2019;12(3):e008666.
17. Reményi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease--an evidence-based guideline. Nat Rev Cardiol. 2012;9(5):297-309.
18. Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Echocardiography in Clinical Trials. J Am Soc Echocardiogr. 2004;17(10):1086-119.
19. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1-64.
20. Wunderlich NC, Beigel R, Siegel RJ. Management of Mitral Stenosis Using 2D and 3D Echo-Doppler Imaging. JACC Cardiovasc Imaging. 2013;6(11):1191-205.
21. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;143(5):e35-e71.
22. Del Rio JM, Grecu L, Nicoara A. Right Ventricular Function in Left Heart Disease. Semin Cardiothorac Vasc Anesth. 2019;23(1):88-107.
23. Lancellotti P, Cosyns B. The EACVI Echo Handbook. Oxford: Oxford University Press; 2015.
24. Filippetti L, Voilliot D, Bellino M, Citro R, Go YY, Lancellotti P. The right heart-pulmonary circulation unit and left heart valve disease. Heart Fail Clin. 2018;14(3):431-42.
25. Tanboga IH, Kurt M, Bilen E, Aksakal E, Kaya A, Isik T, et al. Assessment of right ventricular mechanics in patients with mitral stenosis by two‐dimensional deformation imaging. Echocardiography. 2012;29(8):956-61.
26. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 2009;22(1):1-23; quiz 101-2.
27. Taamallah K, Jabloun TY, Guebsi M, Hajlaoui N, Lahidheb D, Fehri W. Subclinical right ventricular dysfunction in patients with mitral stenosis. J Echocardiogr. 2022;20(2):87-96.
28. Mehrabi-Pari S, Nayebirad S, Shafiee A, Vakili-Basir A, Hali R, Ghavami M, Jalali A. Segmental and global longitudinal strain measurement by 2-dimensional speckle tracking echocardiography in severe rheumatic mitral stenosis. BMC Cardiovasc Disord. 2023;23(1):584.



29. Kumar V, Jose VJ, Pati PK, Jose J. Assessment of right ventricular strain and strain rate in patients with severe mitral stenosis before and after balloon mitral valvuloplasty. Indian Heart J. 2014;66(2):176-82.
30. Lupi L, Italia L, Pagnesi M, Pancaldi E, Ancona F, Stella S, et al. Prognostic value of right ventricular longitudinal strain in patients with secondary mitral regurgitation undergoing transcatheter edge-to-edge mitral valve repair. Eur Heart J Cardiovasc Imaging. 2023;24(11):1509-17.
Files
IssueVol 20 No 3 (2025) QRcode
SectionOriginal Article(s)
DOI https://doi.org/10.18502/jthc.v20i3.20110
Keywords
Mitral Valve Stenosis Speckle Tracking Echocardiography Global Longitudinal Strain Free-Wall Longitudinal Strain Right Ventricular Function

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Abtahi F, Esfandiari H, Arzhangzadeh A, Nozhat S, Narimani-Javid R. The Diagnostic Role of Speckle-Tracking Echocardiography–Derived Right Ventricular Longitudinal Strain in Determining the Severity of Rheumatic Mitral Stenosis. Res Heart Yield Transl Med. 2025;20(3):193-202.