Reduced Left Ventricular Global Longitudinal Strain in the Coronary Slow Flow Phenomenon: A Systematic Review and Meta-Analysis
Abstract
Background: The coronary slow flow phenomenon (CSFP) involves delayed coronary artery filling without obstruction and is associated with angina and myocardial ischemia. This meta-analysis assessed the link between CSFP and impaired left ventricular global longitudinal strain (LVGLS), a marker of subclinical myocardial dysfunction.
Methods: A systematic search (PubMed, Embase, Scopus up to January 2025) identified 18 observational studies comparing LVGLS and layer-specific strain in patients with CSFP vs controls with normal coronary flow.
Results: Patients with CSFP showed significantly reduced LVGLS vs controls (SMD, 1.22; 95% CI, 0.69 to 1.75). Layer-specific analysis revealed impairment across all myocardial layers, most pronounced in the endocardium (SMD, 0.79; 95% CI, 0.21 to 1.38). While left ventricular ejection fraction (LVEF) was preserved, LVGLS demonstrated moderate-to-high diagnostic accuracy for CSFP (AUC, 0.80; 95% CI, 0.66 to 0.95). Reduced LVGLS independently predicted CSFP (adjusted OR, 1.43; 95% CI, 1.19 to 1.46). Exercise stress effects on LVGLS were inconsistent.
Conclusion: CSFP is associated with impaired LVGLS, particularly in the endocardial layer, despite preserved LVEF. LVGLS may serve as a noninvasive marker for subclinical dysfunction in CSFP.
2. Tambe A, Demany M, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries—a new angiographic finding. Am Heart J. 1972;84(1):66-71.
3. Shereef AS, Abdelmajeed MG, Alshair MH, El-Dosouky II, Khalil WA, Wageeh S, et al. Coronary slow flow and its correlation with reduced left ventricle global longitudinal strain: a case–control study. Echo Res Pract. 2024;11(1):2.
4. Zhu Q, Wang S, Huang X, Zhao C, Wang Y, Li X, et al. Understanding the pathogenesis of coronary slow flow: recent advances. Trends Cardiovasc Med. 2024;34(3):137-44.
5. Barutçu A, Akşit E, Arslan M, Tok O, Kucück U. Evaluation of the effect of coronary slow flow phenomenon on cardiac functions. Ann Clin Anal Med.2022;13(10):1098-1102.
6. Dong T, Zhu Q, Wang S, Liu S, Wang S, Wang Y, et al. Evaluation of left ventricular function in patients with coronary slow flow: A systematic review and meta-analysis. Cardiol J. 2023;30(6):929-37.
7. Vrabel M. Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Oncol Nurs Forum. 2015;42(5):552-4.
8. Barutçu A, Bekler A, Temiz A, Kırılmaz B, Yener AÜ, Tan YZ, et al. Left ventricular twist mechanics are impaired in patients with coronary slow flow. Echocardiography. 2015;32(11):1647-54.
9. Gulel O, Akcay M, Soylu K, Aksan G, Yuksel S, Zengin H, et al. Left ventricular myocardial deformation parameters are affected by coronary slow flow phenomenon: a study of speckle tracking echocardiography. Echocardiography. 2016;33(5):714-23.
10. Jovanovic I, Tesic M, Giga V, Dobric M, Boskovic N, Vratonjic J, et al. Impairment of coronary flow velocity reserve and global longitudinal strain in women with cardiac syndrome X and slow coronary flow. J Cardiol. 2020;76(1):1-8.
11. Kemaloğlu Öz T, Eren M, Atasoy I, Gürol T, Soylu Ö, Dağdeviren B. Are biventricular systolic functions impaired in patient with coronoray slow flow? A prospective study with three-dimensional speckle tracking. Int J Cardiovasc Imaging. 2017;33(5):675-81.
12. Li J, Wang Y, Zhao C, Zhu Q, Li G, Yang J, et al. Incremental value of three-dimensional echocardiography for evaluating left atrial function in patients with coronary slow flow phenomenon: a case control study. Cardiovascular Ultrasound. 2020; 18:1-10.
13. Liu S, Wang Y, Li J, Li G, Mu L, Jia D, et al. Incremental value of three-dimensional speckle-tracking echocardiography for evaluating left ventricular systolic function in patients with coronary slow flow. Curr Probl Cardiol. 2022;47(9):100928.
14. MOHAMED MG, MAGDY MA, AHMED SE, ISLAM MA. Coronary Slow Flow Phenomenon: The Role of New Echo cardiographic Indices Med J Cairo Univ. 2020;88(9):1783-92.
15. Narimani S, Hosseinsabet A, Pourhosseini H. Effect of coronary slow flow on the longitudinal left ventricular function assessed by 2‐dimensional speckle‐tracking echocardiography. J Ultrasound Med. 2016;35(4):723-9.
16. Nurkalem Z, Gorgulu S, Uslu N, Orhan AL, Alper AT, Erer B, et al. Longitudinal left ventricular systolic function is impaired in patients with coronary slow flow. Int J Cardiovasc Imaging. 2009;25(1):25-32.
17. Seyyed-Mohammadzad MH, Rashtchizadeh S, Khademvatani K, Afsargharehbagh R, Nasiri A, Sepehrvand N. Ventricular dysfunction in patients with coronary slow-flow phenomenon: A single-center case–control study. Heart Views. 2020;21(2):60-4.
18. Shi J, Xing Y, Qian J, Yang H, Yan Y, Li Q, et al. Early assessment of left ventricular function by layer-specific strain and its relationship to pulsatile arterial load in patients with coronary slow flow. Int Heart J. 2019;60(3):586-92.
19. Wang Y, Li J, Liu S, Mu L, Li G, Yu H, et al. Value of exercise stress electrocardiography for stratification of exercise capacity and left ventricular systolic and diastolic function on coronary slow flow: case-control study. BMC Cardiovasc Disord. 2019;19(1):288
20. Wang Y, Ma C, Zhang Y, Guan Z, Liu S, Li Y, et al. Assessment of left and right ventricular diastolic and systolic functions using two-dimensional speckle-tracking echo- cardiography in patients with coronary slow-flow phenomenon. PLoS One. 2015;10(2): e0117979.
21. Wang Y, Ma C, Zhang Y, Guan Z, Liu S, Li Y, et al. Layer‐specific analysis of left ventricular myocardial contractility in patients with coronary slow‐flow phenomenon. J Clin Ultrasound. 2016;44(7):429-36.
22. Wang Y, Yu H, Zhao C, Li G, Yang J, Jia D, et al. Usefulness of soluble endothelial protein C receptor combined with left ventricular global longitudinal strain for predicting slow coronary flow: A case-control study. Cardiol J. 2022;29(4):619-26.
23. Xing Y, Shi J, Yan Y, Liu Y, Chen Y, Kong D, et al. Subclinical myocardial dysfunction in coronary slow flow phenomenon: identification by speckle tracking echocardiography. Microcirculation. 2019;26(1): e12509.
24. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart. 2014;100(21):1673-80.
25. Wang X, Nie S-P. The coronary slow flow phenomenon: characteristics, mechanisms and implications. Cardiovasc Diagn Ther. 2011;1(1):37-43.
| Files | ||
| Issue | Vol 20 No 4 (2025) | |
| Section | Review Article(s) | |
| Keywords | ||
| Coronary Slow Flow Phenomenon Left Ventricle Global Longitudinal Strain Speckle-Tracking Echocardiography | ||
| Rights and permissions | |
|
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |

